The fatty acid (FA) composition of the red blood cell (RBC) has been reported to provide prognostic information regarding risk for coronary heart disease (CHD). In particular, the Omega-3 Index (RBC eicosapentaenoic acid+docosahexaenoic acid, EPA+DHA) has been shown to be independently and inversely related to risk for sudden cardiac death and for acute coronary syndromes. Higher linoleic acid (n-6) and lower trans FA levels have also been associated with improved CHD outcomes. Accordingly, the RBC FA panel has recently been introduced in routine clinical laboratory testing.

The purpose of this study was to define age- and gender-based norms for RBC FA levels.

RBC FA profiles from about 160,000 patients (48% from males, 52% from females) were measured at Health Diagnostic Laboratory. These data were used to create age decade and gender-specific norms (percentiles). FA values were expressed as a percent of total identified FA.

Compared to men, women generally had higher C18 trans levels, and between the ages of 10-29 years, they had DHA and lower EPA levels. Among the major FA classes, saturated (41% of total) and trans (∼0.85%) fats did not vary appreciably by age, whereas monounsaturated fats tended to rise slightly. Of the two major n-6 polyunsaturates, arachidonic and linoleic acids, the former was unchanged across decades (16.4% abundance) whereas the latter decreased by about 2 percentage points (13.0-11.1%). The overall median Omega-3 Index was 4.5%, and across the decades it increased by about 1.5 percentage points. The Omega-3 Index and linoleic acid stabilized after age 70.

Whereas RBC saturated, mono- and polyunsaturated FA levels are generally stable across the lifespan, there is a shift in the composition of the latter, with an increase in the Omega-3 Index and a decrease in linoleic acid. Higher DHA and lower EPA levels in younger women is consistent with enhanced conversion of EPA to DHA during the early reproductive years. The availability of RBC FA norms will facilitate research into the relationships between altered FA status and human disease, and will help physicians evaluate the n-3 FA status of their patients.