Chronic inflammation is considered to play a role in the development of cardiovascular disease. Various (n-3) fatty acids (FA) have been reported to have anti-inflammatory effects, but there is a lack of consensus in this area, particularly in regard to optimal source(s) and dose(s). This study aimed to determine the effects of high and low doses of (n-3) FA from plant and marine sources on plasma inflammatory marker concentrations.

One-hundred adults with metabolic syndrome were randomly assigned to a low or high dose of plant- (2.2 or 6.6 g/d α-linolenic acid) or marine- (1.2 or 3.6 g/d EPA and DHA) derived (n-3) FA or placebo for 8 wk, using a parallel arm design (n = 20/arm). Fasting blood samples collected at 0, 4, and 8 wk were analyzed for concentrations of monocyte chemotactic protein-1 (MCP-1), IL-6, and soluble intercellular adhesion molecule-1 (sICAM-1) and for cardiovascular risk factors.

Baseline concentrations across all 5 groups combined were (mean ± SD) 103 ± 32 ng/L for MCP-1, 1.06 ± 0.56 ng/L for IL-6, and 0.197 ± 0.041 ng/L for sICAM-1. There were no significant differences in 8-wk changes in plasma inflammatory marker concentrations among the 5 groups. Plasma TG and blood pressure decreased significantly more and the LDL cholesterol concentration increased more in the high-dose fish oil group compared to the 8-wk changes in some of the other 4 groups (P ≤ 0.04).

In conclusion, no beneficial effects were detected for any of the 3 inflammatory markers investigated in response to (n-3) FA in adults with metabolic syndrome regardless of dose or source.

PMID: 22031659

See following website for full manuscript.