Metabolic programming in utero due to maternal undernutrition is considered to increase the risk of adult diseases in offspring. It is therefore of relevance to investigate how dietary supplementation of specific nutrients can ameliorate the negative effects of maternal malnutrition.

We examined the effects of supplementing fish oil or folic acid, both of which are conventional supplements in maternal intervention, on risk factors in the offspring as adults.

Pregnant female rats from 4 groups (n = 6/group) were fed casein diets with 18 g/100 g protein (control diet), 12 g/100 g protein supplemented with 8 mg folic acid/kg diet (0.08 mg/kg diet) (FAS), 12 g/100 g protein without folic acid (FAD) or 12 g/100 g protein supplemented with 7 g/100 g fish oil (FOIL).

Pups were weaned to a standard laboratory diet with 18 g/100 g protein. Serum glucose, insulin and cholesterol and plasma homocysteine levels were measured in the offspring at 6 and 11 mo of age. Serum glucose in 11-mo-old male and female pups was greater (P < 0.05) in both the FAS (males 2.46 +/- 0.51, females 2.49 +/- 0.29 mmol/L) and FAD groups (2.48 +/- 0.28 and 2.67 +/- 0.41 mmol/L) than in controls (2.03 +/- 0.15 and 2.02 +/- 0.18 mmol/L). Serum insulin concentrations were higher (P < 0.05) in the FAD group (males 1476 +/- 317, females 1441 +/- 220 pmol/L) but were lower in males from the FAS group (483 +/- 165 pmol/L) compared with controls (males 917 +/- 373, females 981 +/- 264 pmol/L).

Glucose and insulin concentrations did not differ between the control and FOIL groups. Plasma homocysteine levels were lower (P < 0.05) only in 11-mo-old folate-deficient males; none of the other groups differed from the controls. Maternal supplementation of fish oil to a diet containing marginal protein was beneficial in maintaining circulating glucose, insulin, cholesterol and homocysteine levels in the offspring as adults.