Young women of reproductive age appear to have a greater capacity than men to convert the essential fatty acid alpha-linolenic acid to DHA. The purpose of this study was to test the hypothesis that gender-related differences in n-3 PUFA metabolism are reflected in the concentrations of n-3 PUFA in plasma lipids.

The subjects were healthy men (n 13) and women (n 23) aged 18-35 years consuming their habitual diet. Dietary habits were assessed by food-frequency questionnaire. Venous blood samples were collected following an overnight fast. For the women, blood collection took place on the tenth day of their menstrual cycle. The fatty acid concentrations of plasma phosphatidylcholine, triacylglycerol, NEFA and cholesteryl esters were determined by gas chromatography.

There were no significant differences between men and women in their consumption of protein, carbohydrate, total fat, alcohol, individual fatty acids and selected micronutrients.

DHA concentration alone was significantly higher in plasma phosphatidylcholine (31 %, P = 0.02), triacylglycerol (71 %, P = 0.02) and NEFA (33 %, P = 0.01), but not cholesteryl esters, in women compared with men.

There were no significant differences between men and women in the concentrations of any other fatty acids measured.

Overall, the present data support the suggestion that greater DHA synthesis in women than men results in a higher DHA concentration in plasma lipids.