Considerable information has accumulated to show that DHA and EPA have unique roles that differ from other n-3 fatty acids and the n-6 fatty acids, with increasing understanding of the mechanisms through which these fatty acids reduce risk of disease.

DHA and EPA regulate hepatic lipid and glucose metabolism, but are present in foods of animal origin, which are generally high in protein with variable triglycerides and low carbohydrate. Biological activity at intakes too low to provide significant amounts of energy is consistent with the definition of a vitamin for which needs are modified by life-stage, diet and genetic variables, and disease.

Recent studies reveal that DHA may play a central role in co-coordinating complex networks that integrate hepatic glucose, fatty acid and amino acid metabolism for the purpose of efficient utilization of dietary protein, particularly during early development when the milk diet provides large amounts of energy from fat.