INTRODUCTION:
Polyunsaturated fatty acids (PUFA) are metabolized in a complex network of elongation, desaturation and beta oxidation.
MATERIAL AND METHODS:
The short (1 and 3 wk), and long term (6 and 12 wk) effect of 1076mg/d docosahexaenoic acid (DHA, free of eicosapentaenoic acid (EPA)) on (absolute) PUFA concentrations in plasma and red blood cells (RBC) of 12 healthy men (mean age 25.1±1.5 years) was investigated.
RESULTS:
RBC DHA concentrations significantly (p<0.001) increased from 28±1.6µg/mL to 38±2.0µg/mL (wk 1), 52±3.3µg/mL (wk 3), 68±2.6µg/mL (wk 6), and 79±3.5µg/mL (wk 12). Arachidonic acid (AA) concentrations declined in response to DHA treatment, while the effect was more pronounced in plasma (wk 0: 183±9.9µg/mL, wk 12: 139±8.0µg/mL, -24%, p<0.001) compared to RBC (wk 0: 130±3.7µg/mL, wk 12: 108±4.0µg/mL, -16%, p=0.001). Furthermore, an increase of EPA concentrations in plasma (wk 0: 15±1.5µg/mL, wk 1:19±1.6µg/mL, wk 3: 27±2.3µg/mL, wk 6: 23±1.2µg/mL, wk 12: 25±1.7µg/mL, p<0.001) and RBC (wk 0: 4.7±0.33µg/mL, wk 1: 6.7±1.3µg/mL, wk 3: 8.0±0.66µg/mL, wk 6: 6.9±0.44µg/mL, wk 12: 6.7±0.45µg/mL, n.s.) was observed suggesting a retroconversion of DHA to EPA.
CONCLUSION:
Based on PUFA concentrations we showed that DHA supplementation results in increased EPA levels, whereas it is not known if this impacts the formation of EPA-derived lipid mediators. Furthermore, shifts in the entire PUFA pattern after supplementation of EPA or DHA should be taken into account when discussing differential physiological effects of EPA and DHA.