OBJECTIVE: Previously, we showed that acute respiratory distress syndrome patients fed an enteral diet containing eicosapentaenoic acid and gamma-linolenic acid and elevated antioxidants (EPA+GLA; Oxepa) had significantly reduced pulmonary inflammation, increased oxygenation, and improved clinical outcomes. In a subset of acute respiratory distress syndrome patients from this trial, we performed a preliminary examination of the potential mechanisms underlying these clinical improvements by retrospectively testing the hypothesis that enteral feeding with EPA+GLA could reduce alveolar-capillary membrane protein permeability and the production of interleukin (IL)-8, IL-6, tumor necrosis factor-alpha, and leukotriene B4 that are responsible, in part, for pulmonary inflammation.

DESIGN: Prospective, randomized, double-blind, controlled clinical trial.

PATIENTS: A total of 67 patients were enrolled who met defined criteria for acute lung injury/acute respiratory distress syndrome.

INTERVENTIONS: A total of 43 of 67 evaluable patients randomly received either EPA+GLA or an isonitrogenous, isocaloric standard diet that was tube fed at a minimum caloric delivery of 75% of basal energy expenditure times 1.33 for at least 4 to 7 days.

MEASUREMENTS AND MAIN RESULTS: Bronchoalveolar lavage (BAL) was performed at baseline and study days 4 and 7 to obtain BAL fluid (BALF) for measurement of total protein, ceruloplasmin, and transferrin, total neutrophil count, IL-8, IL-6, tumor necrosis factor-alpha, and leukotriene B4. Oxygenation, measured as Pao2/Fio2, was assessed before BAL. Patients fed EPA+GLA had a significant reduction in BALF ceruloplasmin and IL-8 during the study as compared with patients fed the control diet. BALF levels of total protein, neutrophils, and leukotriene B4 tended to decrease in EPA+GLA patients over the course of the study as compared with control patients. BALF levels of IL-6 declined similarly during the study in both groups. A trend toward a reduction in BALF tumor necrosis factor-alpha was observed on study day 7 in the EPA+GLA group as compared with control patients. Significant improvements in oxygenation (Pao2/Fio2) occurred in EPA+GLA patients on study day 4 as compared with controls. Correlation analysis revealed significant relationships between BALF neutrophil counts and indices of alveolar-capillary membrane protein permeability, IL-8, and leukotriene B4.

CONCLUSIONS: This preliminary investigation showing a decrease in BALF levels of IL-8 and leukotriene B4 and the associated reduction of BALF neutrophils and alveolar membrane protein permeability in acute respiratory distress syndrome patients fed EPA+GLA support, in part, the potential mechanisms underlying the previously described clinical improvements with this diet. Additional controlled studies are needed to confirm these findings.